Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.328
Filter
1.
Cephalalgia ; 44(4): 3331024241248833, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38663908

ABSTRACT

INTRODUCTION: Effectiveness of candesartan in migraine prevention is supported by two randomized controlled trials. We aimed to assess the effectiveness, tolerability, and response predictors of candesartan in the preventive treatment of migraine. METHODS: Observational, multicenter, prospective cohort study. The 50%, 75% and 30% responder rates, between weeks 8-12 and 20-24, were compared with the baseline. Treatment emergent adverse effects were systematically evaluated. Response predictors were estimated by multivariate regression models. RESULTS: Eighty-six patients were included, 79.1% females, aged 39.5 (inter-quartile range [IQR] 26.3-50.3), with chronic migraine (43.0%), medication overuse headache (55.8%) and a median of two (inter-quartile range: 0.75-3) prior preventive treatments. At baseline patients had 14 (10-24) headache and 8 (5-11) migraine days per month. The 30%, 50% and 75% responder rates were 40%, 34.9% and 15.1% between weeks 8-12, and 48.8%, 36%, and 18.6% between weeks 20-24. Adverse effects were reported by 30 (34.9%) and 13 (15.1%) patients between weeks 0-12 and 12-24, leading to discontinuation in 15 (17.4%) patients. Chronic migraine, depression, headache days per month, medication overuse headache, and daily headache at baseline predicted the response between weeks 20-24. CONCLUSION: Candesartan effectiveness and tolerability in migraine prevention was in line with the clinical trials' efficacy.Trial registration: The study protocol is registered in ClinicalTrials.gov (NCT04138316).


Subject(s)
Benzimidazoles , Biphenyl Compounds , Migraine Disorders , Tetrazoles , Humans , Migraine Disorders/drug therapy , Female , Male , Benzimidazoles/therapeutic use , Benzimidazoles/adverse effects , Adult , Tetrazoles/therapeutic use , Tetrazoles/adverse effects , Middle Aged , Treatment Outcome , Prospective Studies , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin II Type 1 Receptor Blockers/adverse effects , Spain/epidemiology , Cohort Studies
2.
Aging (Albany NY) ; 16(7): 6417-6444, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38579174

ABSTRACT

Sushi domain-containing protein 4 (SUSD4) is a complement regulatory protein whose primary function is to inhibit the complement system, and it is involved in immune regulation. The role of SUSD4 in cancer progression has largely remained elusive. SUSD4 was studied across a variety of cancer types in this study. According to the results, there is an association between the expression level of SUSD4 and prognosis in multiple types of cancer. Further analysis demonstrated that SUSD4 expression level was related to immune cell infiltration, immune-related genes, tumor heterogeneity, and multiple cancer pathways. Additionally, we validated the function of SUSD4 in colorectal cancer cell lines and found that knockdown of SUSD4 inhibited cell growth and impacted the JAK/STAT pathway. By characterizing drug sensitivity in organoids, we found that the expression of SUSD4 showed a positive correlation trend with IC50 of Selumetinib, YK-4-279, and Piperlongumine. In conclusion, SUSD4 is a valuable prognostic indicator for diverse types of cancer, and it has the potential to be a target for cancer therapy.


Subject(s)
Colorectal Neoplasms , Piperidones , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Prognosis , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Cell Proliferation/drug effects , Cell Proliferation/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Signal Transduction
3.
Cancer Invest ; 42(3): 260-273, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38588003

ABSTRACT

In this study, we investigate the veliparib­induced toxicity in cancer patients. Databases were searched for RCTs treated with veliparib. We found veliparib could increase the risk of hematologic and gastrointestinal toxicities. Anemia, neutropenia, thrombocytopenia, and nausea were the most common toxicities. Patients diagnosed with gastrointestinal tumors tend to have a higher risk of high-grade neutropenia; patients in the first-line setting tend to have a higher risk of high-grade anemia and neutropenia than those in the ≥ second line setting. Patients receiving higher dosage of veliparib tend to have a higher risk of all-grade anemia. Veliparib could also increase the risk of insomnia, myalgia, pneumonia, dyspnea, hyponatremia, and fatigue.


Subject(s)
Benzimidazoles , Neoplasms , Humans , Benzimidazoles/adverse effects , Benzimidazoles/therapeutic use , Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Antineoplastic Agents/adverse effects , Anemia/chemically induced
4.
Eur Rev Med Pharmacol Sci ; 28(6): 2522-2537, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38567612

ABSTRACT

OBJECTIVE: Alzheimer's disease (AD) is identified by neuropathological symptoms, and there is now no effective treatment for the condition. A lack of the brain neurotransmitter acetylcholine has been related to the etiology of Alzheimer's disease. Acetylcholinesterase is an enzyme that breaks down acetylcholine to an inactive form and causes the death of cholinergic neurons. Conventional treatments were used but had less effectiveness. Therefore, there is a crucial need to identify alternative compounds with potential anti-cholinesterase agents and minimal undesirable effects. MATERIALS AND METHODS: Fluoroquinolones and benzimidazole-benzothiazole derivatives offer antimicrobial, anti-inflammatory, anti-oxidant, anti-diabetic, and anti-Alzheimer activities. To enhance the chemical portfolio of cholinesterase inhibitors, a variety of fluoroquinolones and benzimidazole-benzothiazole compounds were evaluated against acetylcholinesterase (AChE) butyrylcholinesterase (BChE) enzymes. For this purpose, molecular docking and adsorption, distribution, metabolism, excretion, and toxicology ADMET models were used for in-silico studies for both AChE and BChE enzymes to investigate possible binding mechanisms and drug-likeness of the compounds. The inhibitory effect of docked heterocyclic compounds was also verified in vitro against AChE and BChE enzymes. Fluoroquinolones (Z, Z3, Z4, Z6, Z8, Z12, Z15, and Z9) and benzimidazole-benzothiazole compounds (TBIS-16, TBAF-1 to 9) passed through the AChE inhibition assay and their IC50 values were calculated. RESULTS: The compound 1-ethyl-6-fluoro-7-(4-(2-(4-nitrophenylamino)-2-oxoethyl)piperazin-1-yl) -4-oxo-1,4 di-hydroquinoline-3-carboxylic acid and 2-((1H-benzo[d]imidazol-2-yl)methyl)-N'-(3-bromobenzyl)-4-hydroxy-2H-thiochromene-3-carbohydrazide 1,1-dioxide (Z-9 and TBAF-6) showed the lowest IC50 values against AChE/BChE (0.37±0.02/2.93±0.03 µM and 0.638±0.001/1.31±0.01 µM, respectively) than the standard drug, donepezil (3.9±0.01/4.9±0.05 µM). During the in-vivo investigation, behavioral trials were performed to analyze the neuroprotective impact of Z-9 and TBAF-6 compounds on AD mouse models. The groups treated with Z-9 and TBAF-6 compounds had better cognitive behavior than the standard drug. CONCLUSIONS: This study found that Z-9 (Fluoroquinolones) and TBAF-6 (benzimidazole-benzothiazole) compounds improve behavioral and biochemical parameters, thus treating neurodegenerative disorders effectively.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Mice , Animals , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Acetylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/therapeutic use , Alzheimer Disease/drug therapy , Acetylcholine , Molecular Docking Simulation , Benzothiazoles/therapeutic use , Benzimidazoles/therapeutic use , Fluoroquinolones/therapeutic use , Structure-Activity Relationship
5.
Parasit Vectors ; 17(1): 173, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570858

ABSTRACT

BACKGROUND: Control of the zoonotic food-borne parasite Fasciola hepatica remains a major challenge in humans and livestock. It is estimated that annual economic losses due to fasciolosis can reach US$3.2 billion in agriculture and livestock. Moreover, the wide distribution of drug-resistant parasite populations and the absence of a vaccine threaten sustainable control, reinforcing the need for novel flukicides. METHODS: The present work analyses the flukicidal activity of a total of 70 benzimidazole derivatives on different stages of F. hepatica. With the aim to select the most potent ones, and screenings were first performed on eggs at decreasing concentrations ranging from 50 to 5 µM and then on adult worms at 10 µM. Only the most effective compounds were also evaluated using a resistant isolate of the parasite. RESULTS: After the first screenings at 50 and 10 µM, four hit compounds (BZD31, BZD46, BZD56, and BZD59) were selected and progressed to the next assays. At 5 µM, all hit compounds showed ovicidal activities higher than 71% on the susceptible isolate, but only BZD31 remained considerably active (53%) when they were tested on an albendazol-resistant isolate, even with values superior to the reference drug, albendazole sulfoxide. On the other hand, BZD59 displayed a high motility inhibition when tested on adult worms from an albendazole-resistant isolate after 72 h of incubation. CONCLUSIONS: BZD31 and BZD59 compounds could be promising candidates for the development of fasciolicidal compounds or as starting point for the new synthesis of structure-related compounds.


Subject(s)
Anthelmintics , Fasciola hepatica , Fascioliasis , Animals , Humans , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Fascioliasis/parasitology , Antinematodal Agents/therapeutic use
6.
J Pediatr Hematol Oncol ; 46(3): e244-e247, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38447094

ABSTRACT

Resistant and refractory cytomegalovirus (CMV) viremia can limit the provision of chemotherapy due to myelosuppression and end-organ dysfunction. Few therapies are available for children with clinically significant CMV viremia. We successfully used maribavir for a 4-year-old patient with lymphoma to complete his chemotherapy course. Resistance to maribavir did result after many months of therapy.


Subject(s)
Cytomegalovirus Infections , Dichlororibofuranosylbenzimidazole , Neoplasms , Ribonucleosides , Child, Preschool , Humans , Antiviral Agents/therapeutic use , Benzimidazoles/therapeutic use , Cytomegalovirus Infections/drug therapy , Dichlororibofuranosylbenzimidazole/analogs & derivatives , Neoplasms/drug therapy , Ribonucleosides/therapeutic use , Viremia/drug therapy
7.
Nat Commun ; 15(1): 1099, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321011

ABSTRACT

Control of soil-transmitted helminths relies heavily on regular large-scale deworming of high-risk groups (e.g., children) with benzimidazole derivatives. Although drug resistance has not yet been documented in human soil-transmitted helminths, regular deworming of cattle and sheep has led to widespread benzimidazole resistance in veterinary helminths. Here we predict the population dynamics of human soil-transmitted helminth infections and drug resistance during 20 years of regular preventive chemotherapy, using an individual-based model. With the current preventive chemotherapy strategy of mainly targeting children in schools, drug resistance may evolve in soil-transmitted helminths within a decade. More intense preventive chemotherapy strategies increase the prospects of soil-transmitted helminths elimination, but also increase the speed at which drug efficacy declines, especially when implementing community-based preventive chemotherapy (population-wide deworming). If during the last decade, preventive chemotherapy against soil-transmitted helminths has led to resistance, we may not have detected it as drug efficacy has not been structurally monitored, or incorrectly so. These findings highlight the need to develop and implement strategies to monitor and mitigate the evolution of benzimidazole resistance.


Subject(s)
Helminthiasis , Helminths , Child , Humans , Animals , Cattle , Sheep , Soil/parasitology , Helminthiasis/drug therapy , Benzimidazoles/therapeutic use , Risk Factors , Prevalence
8.
J Am Anim Hosp Assoc ; 60(2): 87-91, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38394692

ABSTRACT

A 4 yr old castrated male greyhound presented with a history of chronic (>3 wk) intermittent diarrhea. Initial fecal analysis identified infection with Ancylostoma caninum. Despite treatment with routine anthelmintics, the dog remained persistently A caninum positive for several months. A novel fecal gastrointestinal real-time polymerase chain reaction (qPCR) parasite panel detected A caninum and the genetic benzimidazole (BZ) F167Y resistance marker in multiple samplings over 48 hr. This finding, together with the dog's clinical signs (diarrhea) and lack of response to routine anthelmintics, prompted treatment with cyclooctadepsipeptide emodepside, a drug currently not registered for dogs in the United States. The dog's clinical signs resolved and post-treatment fecal qPCR testing was negative. However, 5 mo later, retesting with fecal qPCR detected A caninum and concurrent BZ resistance marker, as well as Giardia. A presumptive diagnosis of re-infection was made and the emodepside treatment was continued. The dog again reverted to undetected (A caninum and the 167 resistance marker) on reassessment fecal qPCR. This case report describes the use of a novel fecal qPCR panel for gastrointestinal parasites, persistent hookworm and BZ F167Y resistance marker detection in a dog, and highlights the importance of a stepwise approach to clinical management, treatment, and retesting.


Subject(s)
Anthelmintics , Dog Diseases , Dogs , Male , Animals , United States , Ancylostoma/genetics , Ancylostomatoidea/genetics , Dog Diseases/diagnosis , Dog Diseases/drug therapy , Dog Diseases/parasitology , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Feces/parasitology , Polymerase Chain Reaction/veterinary , Diarrhea/drug therapy , Diarrhea/veterinary
9.
Vet Parasitol ; 327: 110113, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38232512

ABSTRACT

In this study, we present the preparation, stability, and in vivo fasciolicidal activity of three new intramuscular formulations in sheep of a prodrug based on triclabendazole, named fosfatriclaben. The new formulations were ready-to-use aqueous solutions with volumes recommended for intramuscular administration in sheep. The use of poloxamers (P-407 and P-188) and polysorbates (PS-20 and PS-80) in the new formulations improved the aqueous solubility of fosfatriclaben by 8-fold at pH 7.4. High-performance liquid chromatography with UV detection was used to evaluate the stability of fosfatriclaben in the three formulations. High recovery (> 90%) of fosfatriclaben was found for all formulations after exposure at 57 ± 2 °C for 50 h. The three intramuscular formulations showed high fasciolicidal activity at a dose of 6 mg/kg, which was equivalent to the triclabendazole content. The fasciolicidal activity of fosfatriclaben was similar to commercial oral (Fasimec®) and intramuscular (Endovet®) triclabendazole formulations at a dose of 12 mg/kg. In the in vivo experiments, all formulations administered intramuscularly reduced egg excretion by 100%, and formulations F1, F2, and F3 presented fasciolicidal activities of 100%, 100%, and 99.6%, respectively.


Subject(s)
Anthelmintics , Fasciola hepatica , Fascioliasis , Prodrugs , Sheep Diseases , Animals , Sheep , Triclabendazole , Fascioliasis/veterinary , Anthelmintics/therapeutic use , Prodrugs/chemistry , Benzimidazoles/therapeutic use , Sheep Diseases/drug therapy , Water/chemistry
10.
Transpl Infect Dis ; 26(2): e14216, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38221739

ABSTRACT

BACKGROUND: Cytomegalovirus (CMV) infections among hematopoietic stem cell transplant (HSCT) and solid organ transplant (SOT) recipients impose a significant health care resource utilization (HCRU)-related economic burden. Maribavir (MBV), a novel anti-viral therapy (AVT), approved by the United States Food and Drug Administration for post-transplant CMV infections refractory (with/without resistance) to conventional AVTs has demonstrated lower hospital length of stay (LOS) versus investigator-assigned therapy (IAT; valgancilovir, ganciclovir, foscarnet, or cidofovir) in a phase 3 trial (SOLSTICE). This study estimated the HCRU costs of MBV versus IAT. METHODS: An economic model was developed to estimate HCRU costs for patients treated with MBV or IAT. Mean per-patient-per-year (PPPY) HCRU costs were calculated using (i) annualized mean hospital LOS in SOLSTICE, and (ii) CMV-related direct costs from published literature. Probabilistic sensitivity analysis with Monte-Carlo simulations assessed model robustness. RESULTS: Of 352 randomized patients receiving MBV (n = 235) or IAT (n = 117) for 8 weeks in SOLSTICE, 40% had HSCT and 60% had SOT. Mean overall PPPY HCRU costs of overall hospital-LOS were $67,205 (95% confidence interval [CI]: $33,767, $231,275) versus $145,501 (95% CI: $62,064, $589,505) for MBV and IAT groups, respectively. Mean PPPY ICU and non-ICU stay costs were: $32,231 (95% CI: $5,248, $184,524) versus $45,307 (95% CI: $3,957, $481,740) for MBV and IAT groups, and $82,237 (95% CI: $40,397, $156,945) MBV versus $228,329 (95% CI: $94,442, $517,476) for MBV and IAT groups, respectively. MBV demonstrated cost savings in over 99.99% of simulations. CONCLUSIONS: This analysis suggests that Mean PPPY HCRU costs were 29%-64% lower with MBV versus other-AVTs.


Subject(s)
Cytomegalovirus Infections , Dichlororibofuranosylbenzimidazole/analogs & derivatives , Organ Transplantation , Ribonucleosides , Humans , Cytomegalovirus , Antiviral Agents , Ganciclovir/therapeutic use , Hospitalization , Transplant Recipients , Benzimidazoles/therapeutic use , Ribonucleosides/therapeutic use , Ribonucleosides/adverse effects , Organ Transplantation/adverse effects , Hematopoietic Stem Cells
12.
Vet Parasitol ; 325: 110079, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029560

ABSTRACT

Resistance to the benzimidazole and macrocyclic lactone anthelmintics is widespread in Cooperia spp. on cattle farms in New Zealand. Since this was first documented in 2006 little has changed in cattle farming systems except for the widespread use of levamisole to control Cooperia spp. in young cattle (i.e., parasite control has maintained an almost total reliance on use of anthelmintics). Here we report the emergence of simultaneous resistance to the benzimidazole, macrocyclic lactone and levamisole anthelmintics in Cooperia spp. and in Ostertagia spp. Anthelmintic efficacy against nematode parasites of cattle was investigated on four commercial farms following reports of poor animal growth rates and welfare, and positive faecal egg counts, despite routine treatment with combination anthelmintics, which included levamisole. Faecal egg count reduction tests involved 15 animals per treatment group, individual egg counts (paired samples) conducted pre- and post-treatment, with eggs counted to ≤ 15 eggs per g faeces and larval cultures for morphological identification. Actives tested varied between farms but always included levamisole alone and several combination products containing levamisole. Of the 20 tests conducted (i.e., 5 products on each of 4 farms) only 3 exceeded 90% efficacy against Cooperia spp. even though 8 of the products tested were combinations containing levamisole and at least one other broad-spectrum anthelmintic. Levamisole used alone achieved efficacies between 44% and 71% against Cooperia spp. across the four trials. The only product to exceed 95% efficacy against Cooperia spp. was a combination of monepantel + abamectin which was 100% effective against all parasites. Resistance to oxfendazole in Ostertagia spp. was indicated on 3 farms, while on one farm efficacy of all the tested products was ≤75% against this parasite. All the farms involved in this study were farming intensive cattle operations with an almost total reliance on anthelmintics to control parasitism. The results clearly demonstrate the emergence of simultaneous resistance to oxfendazole, levamisole and the macrocyclic lactone anthelmintics. Despite years of advice and recommendations to change farming practices away from intensive monocultures, many farmers have continued with the practice, and some are now faced with the very real possibility of being unable to control cattle parasites on their farms.


Subject(s)
Anthelmintics , Cattle Diseases , Nematoda , Nematode Infections , Parasites , Trichostrongyloidea , Animals , Cattle , Levamisole/pharmacology , Levamisole/therapeutic use , New Zealand/epidemiology , Drug Resistance , Ovum , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Feces/parasitology , Ostertagia , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Parasite Egg Count/veterinary , Cattle Diseases/drug therapy , Cattle Diseases/parasitology , Nematode Infections/drug therapy , Nematode Infections/epidemiology , Nematode Infections/veterinary
13.
Mol Biochem Parasitol ; 257: 111600, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38030084

ABSTRACT

BACKGROUND: The intensive application of anthelmintics in equine has led to considerable resistance in cyathostomins and Parascaris equorum. It has been well documented that benzimidazole (BZ) and pyrantel resistance is widespread in cyathostomins and Parascaris equorum. Since no new classes of anthelmintic have been introduced in the last 40 years, it is critical to be aware of the current risk factors of anthelmintic application to avoid further resistance. OBJECTIVE: To review the factors affecting the level of anthelmintics resistance in equine around the world, type of anthelmintics, mode of application, dosage, nematode species, and location of anthelmintics application were evaluated and summarized. DESIGN/PROCEDURE: A systematic review and meta-analyses following the PRISMA Framework were conducted to identify, evaluate, and synthesize primary literature reporting the efficacy of anthelmintic drugs in equines. Information on the bibliographic data, anthelmintic drugs, animals, continents, parasite genera, type of anthelmintics, and dosage was collected. Nonparametric tests (Kruskal-Wallis and Mann-Whitney) were used in SPSS (v.27) to investigate the association between variables. Factors that have a significant impact on efficacy have been subjected to binary logistic regression. Six meta-analyses were conducted in Microsoft Excel (2021) to qualify current resistance issues of the three major anthelmintics classes. RESULTS: The final database was composed of 60 articles published between 1994 and 2022 with a total of 11835 animals. Anthelmintic class as well as anthelmintic active principle selection did have a significant effect on resistance (P < 0.01), whilst no correlation of the type of anthelmintics, mode of application, and dosage with efficacy were found. Anthelmintics resistance in ascarid was significantly more severe than in strongyle (P < 0.01). Macrocyclic lactone (ML) class and the benzimidazole and probenzimidazole (BP) class have the lowest efficacy against ascarid and strongyle, respectively (67.83% and 69.85%). The effect of location (by continent) also had a significant influence on the resistance of the ML class (P < 0.01). The resistance of the BP class which is the most prevalently applied was demonstrated in all six continents. Binary logistic regression revealed that parasite genera and drug class independently influenced the presence of drug resistance. The forest plots included in this study did not show a significant difference over time. CONCLUSION: Current evidence indicated that anthelmintics resistance of ML and BP class were common in ascarid and strongyle. A combination of anthelmintics may reduce anthelmintics resistance, but multi-drug resistance may be a concern. Customerised anthelmintics strategy could help reduce resistance.


Subject(s)
Anthelmintics , Horse Diseases , Nematoda , Animals , Horses , Horse Diseases/drug therapy , Horse Diseases/parasitology , Anthelmintics/pharmacology , Ivermectin/pharmacology , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Drug Resistance , Lactones/pharmacology , Lactones/therapeutic use , Feces/parasitology
14.
J Infect Dis ; 229(2): 413-421, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-37506264

ABSTRACT

BACKGROUND: This drug resistance analysis of a randomized trial includes 234 patients receiving maribavir and 116 receiving investigator-assigned standard therapy (IAT), where 56% and 24%, respectively, cleared cytomegalovirus DNA at week 8 (treatment responders). METHODS: Baseline and posttreatment plasma samples were tested for mutations conferring drug resistance in viral genes UL97, UL54, and UL27. RESULTS: At baseline, genotypic testing revealed resistance to ganciclovir, foscarnet, or cidofovir in 56% of patients receiving maribavir and 68% receiving IAT, including 9 newly phenotyped mutations. Among them, 63% (maribavir) and 21% (IAT) were treatment responders. Detected baseline maribavir resistance mutations were UL27 L193F (n = 1) and UL97 F342Y (n = 3). Posttreatment, emergent maribavir resistance mutations were detected in 60 (26%) of those randomized to maribavir, including 49 (48%) of 103 nonresponders and 25 (86%) of the 29 nonresponders where viral DNA initially cleared then rebounded while on maribavir. The most common maribavir resistance mutations were UL97 T409M (n = 34), H411Y (n = 26), and C480F (n = 21), first detected 26 to 130 (median 56) days after starting maribavir. CONCLUSIONS: Baseline maribavir resistance was rare. Drug resistance to standard cytomegalovirus antivirals did not preclude treatment response to maribavir. Rebound in plasma cytomegalovirus DNA while on maribavir strongly suggests emerging drug resistance. CLINICAL TRIALS REGISTRATION: NCT02931539.


Subject(s)
Cytomegalovirus Infections , Dichlororibofuranosylbenzimidazole , Ribonucleosides , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Benzimidazoles/therapeutic use , Cytomegalovirus/genetics , Cytomegalovirus Infections/drug therapy , Dichlororibofuranosylbenzimidazole/analogs & derivatives , DNA , Drug Resistance, Viral/genetics , Ganciclovir/therapeutic use , Mutation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Ribonucleosides/therapeutic use , Transplant Recipients
15.
Clin Cancer Res ; 30(2): 420-435, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-37611074

ABSTRACT

PURPOSE: Brain metastases are associated with high morbidity and are often resistant to immune checkpoint inhibitors. We evaluated whether CDK4/6 inhibitor (CDKi) abemaciclib can sensitize intracranial tumors to programmed cell death protein 1 (PD-1) inhibition in mouse models of melanoma and breast cancer brain metastasis. EXPERIMENTAL DESIGN: Treatment response was evaluated in vivo using immunocompetent mouse models of brain metastasis bearing concurrent intracranial and extracranial tumors. Treatment effect on intracranial and extracranial tumor-immune microenvironments (TIME) was evaluated using immunofluorescence, multiplex immunoassays, high-parameter flow cytometry, and T-cell receptor profiling. Mice with humanized immune systems were evaluated using flow cytometry to study the effect of CDKi on human T-cell development. RESULTS: We found that combining abemaciclib with PD-1 inhibition reduced tumor burden and improved overall survival in mice. The TIME, which differed on the basis of anatomic location of tumors, was altered with CDKi and PD-1 inhibition in an organ-specific manner. Combination abemaciclib and anti-PD-1 treatment increased recruitment and expansion of CD8+ effector T-cell subsets, depleted CD4+ regulatory T (Treg) cells, and reduced levels of immunosuppressive cytokines in intracranial tumors. In immunodeficient mice engrafted with human immune systems, abemaciclib treatment supported development and maintenance of CD8+ T cells and depleted Treg cells. CONCLUSIONS: Our results highlight the distinct properties of intracranial and extracranial tumors and support clinical investigation of combination CDK4/6 and PD-1 inhibition in patients with brain metastases. See related commentary by Margolin, p. 257.


Subject(s)
Brain Neoplasms , Programmed Cell Death 1 Receptor , Humans , Mice , Animals , Brain Neoplasms/pathology , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , CD8-Positive T-Lymphocytes , Tumor Microenvironment , Cyclin-Dependent Kinase 4/metabolism
16.
Int J Parasitol ; 54(1): 55-64, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37536387

ABSTRACT

Anthelmintic-resistant parasitic nematodes present a significant threat to sustainable livestock production worldwide. The ability to detect the emergence of anthelmintic resistance at an early stage, and therefore determine which drugs remain most effective, is crucial for minimising production losses. Despite many years of research into the molecular basis of anthelmintic resistance, no molecular-based tools are commercially available for the diagnosis of resistance as it emerges in field settings. We describe a mixed deep amplicon sequencing approach to determine the frequency of the levamisole (LEV)-resistant single nucleotide polymorphism (SNP) within arc-8 exon 4 (S168T) in Haemonchus spp., coupled with benzimidazole (BZ)-resistant SNPs within ß-tubulin isotype-1 and the internal transcribed spacer-2 (ITS-2) nemabiome. This constitutes the first known multi-drug and multi-species molecular diagnostic developed for helminths of veterinary importance. Of the ovine, bovine, caprine and camelid Australian field isolates we tested, S168T was detected in the majority of Haemonchus spp. populations from sheep and goats, but rarely at a frequency greater than 16%; an arbitrary threshold we set based on whole genome sequencing (WGS) of LEV-resistant Haemonchus contortus GWBII. Overall, BZ resistance was far more prevalent in Haemonchus spp. than LEV resistance, confirming that LEV is still an effective anthelmintic class for small ruminants in New South Wales, Australia. The mixed amplicon metabarcoding approach described herein paves the way towards the use of large scale sequencing as a surveillance technology in the field, the results of which can be translated into evidence-based recommendations for the livestock sector.


Subject(s)
Anthelmintics , Cattle Diseases , Goat Diseases , Haemonchiasis , Haemonchus , Sheep Diseases , Animals , Sheep , Cattle , Haemonchus/genetics , Levamisole/pharmacology , Levamisole/therapeutic use , Goats/genetics , Sequence Analysis, DNA/methods , Australia , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Ruminants , Drug Resistance/genetics , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Goat Diseases/drug therapy , Sheep Diseases/parasitology
17.
Curr Med Chem ; 31(15): 1955-1982, 2024.
Article in English | MEDLINE | ID: mdl-37718524

ABSTRACT

Protozoan parasites represent a significant risk for public health worldwide, afflicting particularly people in more vulnerable categories and cause large morbidity and heavy economic impact. Traditional drugs are limited by their toxicity, low efficacy, route of administration, and cost, reflecting their low priority in global health management. Moreover, the drug resistance phenomenon threatens the positive therapy outcome. This scenario claims the need of addressing more adequate therapies. Among the diverse strategies implemented, the medicinal chemistry efforts have also focused their attention on the benzimidazole nucleus as a promising pharmacophore for the generation of new drug candidates. Hence, the present review provides a global insight into recent progress in benzimidazole-based derivatives drug discovery against important protozoan diseases, such as malaria, leishmaniasis and trypanosomiasis. The more relevant chemical features and structure-activity relationship studies of these molecules are discussed for the purpose of paving the way towards the development of more viable drugs for the treatment of these parasitic infections.


Subject(s)
Antiprotozoal Agents , Leishmaniasis , Malaria , Trypanosomiasis , Humans , Antiparasitic Agents/therapeutic use , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/chemistry , Malaria/drug therapy , Trypanosomiasis/drug therapy , Leishmaniasis/drug therapy , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use
18.
Clin Cancer Res ; 30(4): 703-718, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-37695642

ABSTRACT

PURPOSE: We conducted research on CDK4/6 inhibitors (CDK4/6i) simultaneously in the preclinical and clinical spaces to gain a deeper understanding of how senescence influences tumor growth in humans. PATIENTS AND METHODS: We coordinated a first-in-kind phase II clinical trial of the CDK4/6i abemaciclib for patients with progressive dedifferentiated liposarcoma (DDLS) with cellular studies interrogating the molecular basis of geroconversion. RESULTS: Thirty patients with progressing DDLS enrolled and were treated with 200 mg of abemaciclib twice daily. The median progression-free survival was 33 weeks at the time of the data lock, with 23 of 30 progression-free at 12 weeks (76.7%, two-sided 95% CI, 57.7%-90.1%). No new safety signals were identified. Concurrent preclinical work in liposarcoma cell lines identified ANGPTL4 as a necessary late regulator of geroconversion, the pathway from reversible cell-cycle exit to a stably arrested inflammation-provoking senescent cell. Using this insight, we were able to identify patients in which abemaciclib induced tumor cell senescence. Senescence correlated with increased leukocyte infiltration, primarily CD4-positive cells, within a month of therapy. However, those individuals with both senescence and increased TILs were also more likely to acquire resistance later in therapy. These suggest that combining senolytics with abemaciclib in a subset of patients may improve the duration of response. CONCLUSIONS: Abemaciclib was well tolerated and showed promising activity in DDLS. The discovery of ANGPTL4 as a late regulator of geroconversion helped to define how CDK4/6i-induced cellular senescence modulates the immune tumor microenvironment and contributes to both positive and negative clinical outcomes. See related commentary by Weiss et al., p. 649.


Subject(s)
Aminopyridines , Liposarcoma , Humans , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Liposarcoma/drug therapy , Liposarcoma/pathology , Cellular Senescence , Cyclin-Dependent Kinase 4 , Tumor Microenvironment
19.
Cytokine Growth Factor Rev ; 75: 57-64, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37838584

ABSTRACT

A dysregulated cell division, one of the key hallmarks of cancer, results in uncontrolled cellular proliferation. This aberrant process, mediated by a dysregulated cell-cycle machinery and overactivation of cyclin-dependent kinase (CDK) 4 and 6, can potentially promote tumorigenesis. The clinical application of CDK 4/6 inhibitors, developed to inhibit cell-cycle progression, in the treatment regimens of breast cancer (BC) patients is expanding. Currently, three agents, ribociclib, palbociclib, and abemaciclib, are approved for treating patients with hormone receptor-positive and human epidermal growth factor receptor 2 (HER2)-negative metastatic BC. In addition, abemaciclib is FDA and EMA-approved for patients with hormone receptor-positive HER2-negative, node-positive, early BC at high risk of recurrence. Emerging data suggest potential anti-tumor effects beyond cell cycle arrest, providing novel insights into the agent's mechanisms of action. As a result, a broader application of the CDK4/6 inhibitors in patients with cancer is achieved, contributing to enhanced optimized treatment in the adjuvant and neoadjuvant settings. Herein, the immunomodulatory activities of CDK4/6 inhibitors, their impact on the cell's metabolic state, and the effect on the decision of the cell to undergo quiescence or senescence are discussed. Moreover, this review provides an update on clinical trial outcomes and the differences in the underlying mechanisms between the distinct CDK4/6 inhibitors.


Subject(s)
Aminopyridines , Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 6/pharmacology , Cyclin-Dependent Kinase 6/therapeutic use , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Cell Cycle , Protein Kinase Inhibitors/therapeutic use , Cyclin-Dependent Kinase 4/pharmacology , Cyclin-Dependent Kinase 4/therapeutic use
20.
Int J Mol Sci ; 24(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38139391

ABSTRACT

Quantum pharmacology introduces theoretical models to describe the possibility of ultra-high dilutions to produce biological effects, which may help to explain the placebo effect observed in hypertensive clinical trials. To determine this within physiology and to evaluate novel ARBs, we tested the ability of known angiotensin II receptor blockers (ARBs) (candesartan and telmisartan) used to treat hypertension and other cardiovascular diseases, as well as novel ARBs (benzimidazole-N-biphenyl tetrazole (ACC519T), benzimidazole-bis-N,N'-biphenyl tetrazole (ACC519T(2)) and 4-butyl-N,N0-bis[[20-2Htetrazol-5-yl)biphenyl-4-yl]methyl)imidazolium bromide (BV6(K+)2), and nirmatrelvir (the active ingredient in Paxlovid) to modulate vascular contraction in iliac rings from healthy male New Zealand White rabbits in responses to various vasopressors (angiotensin A, angiotensin II and phenylephrine). Additionally, the hemodynamic effect of ACC519T and telmisartan on mean arterial pressure in conscious rabbits was determined, while the ex vivo ability of BV6(K+)2 to activate angiotensin-converting enzyme-2 (ACE2) was also investigated. We show that commercially available and novel ARBs can modulate contraction responses at ultra-high dilutions to different vasopressors. ACC519T produced a dose-dependent reduction in rabbit mean arterial pressure while BV6(K+)2 significantly increased ACE2 metabolism. The ability of ARBs to inhibit contraction responses even at ultra-low concentrations provides evidence of the existence of quantum pharmacology. Furthermore, the ability of ACC519T and BV6(K+)2 to modulate blood pressure and ACE2 activity, respectively, indicates their therapeutic potential against hypertension.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Hypertension , Rabbits , Male , Animals , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Telmisartan/pharmacology , Angiotensin-Converting Enzyme 2/pharmacology , Angiotensin Receptor Antagonists/pharmacology , Iliac Artery , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Benzimidazoles/therapeutic use , Tetrazoles/pharmacology , Tetrazoles/therapeutic use , Hypertension/drug therapy , Blood Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...